3D 13C--15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C--15N-double-labeled proteins

Thomas Szyperski, Gerhard Wider, John H. Bushweller and Kurt Wüthrich
Binnner für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland

Received 16 December 1992
Accepted 18 December 1992

Keywords: NMR; Resonance assignments; Heteronuclear two-spin coherence spectroscopy; Protein structure determination

SUMMARY

The pulse sequence of a new constant-time 3D triple-resonance experiment, ct-HAICAN[HN], is presented. This experiment delineates exclusively scalar connectivities and uses 13C--15N heteronuclear two-spin coherence to overlay the chemical shift evolution periods of the 1C and 1N nuclei, thereby providing the four resonance frequencies of the α-proton, the α-carbon, the amide nitrogen, and the amide proton of a given amino acid residue in three dimensions. This experiment promises to be a valid alternative to 4D experiments, providing the same information on intrarresidue polypeptide backbone connectivities in 13C--15N-double-labeled proteins.

Sequence-specific 1H NMR assignments, which provide the basis for 3D protein structure determinations in solution (Wüthrich et al., 1982), have conventionally been obtained by analysis of 1H--1H sequential NOEs (Wüthrich, 1986). Although work with homonuclear 1H NMR is usually limited to proteins with molecular weights below 10 000 to 12 000, this strategy can be applied to larger proteins with the use of isotope labeling and higher-dimensional, heteronuclear-resolved (1H,1H)-NOESY experiments (e.g., Torchia et al., 1989; Wüthrich et al., 1991). As an alternative, sequential assignments have been obtained using exclusively heteronuclear scalar couplings along the polypeptide backbone in 13C--15N-double-labeled proteins (Igo et al., 1990).

* To whom correspondence should be addressed.

Abbreviations: 3D, 4D, three-dimensional, four-dimensional; TPPLE, time-proportional phase incrementation; ct, constant-time; rf, radiofrequency; NOE, nuclear Overhauser enhancement; NOESY, two-dimensional nuclear Overhauser enhancement spectroscopy; glutaredoxin(C145), mutant E. coli glyoxalase with the cysteine at position 14 replaced by serine.

0925-2738/93 © 1993 ESCOM Science Publishers B.V.